SPELL - S. cerevisiae - Dataset Details
New Search

Dataset Listing

Show Expression Levels

Download Expression Data

About the Website

SPELL Version 2.0.3

Citation Chu HY, Hopper AK. Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome. Molecular and cellular biology, 2013.
PubMed ID 23979602
Short Description Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome.
# of Conditions 36
Full Description 1316625150_help In eukaryotic cells, tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm, where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm, and tRNA subcellular distribution is nutrient dependent. At least three members of the beta-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates the translation of particular transcripts, we compared the expression profiles from nontranslating mRNAs and polyribosome-associated translating mRNAs collected from msn5Delta, mtr10Delta, and wild-type cells under fed or acute amino acid depletion conditions. Our microarray data revealed that the methionine, arginine, and leucine biosynthesis pathways are targets of the tRNA retrograde process. We confirmed the microarray data by Northern and Western blot analyses. The levels of some of the particular target mRNAs were reduced, while others appeared not to be affected. However, the protein levels of all tested targets in these pathways were greatly decreased when tRNA nuclear import or reexport to the cytoplasm was disrupted. This study provides information that tRNA nuclear-cytoplasmic dynamics is connected to the biogenesis of proteins involved in amino acid biosynthesis.
Tags 1316625150_help
amino acid utilization, starvation, translational regulation