SPELL - S. cerevisiae - Dataset Details
New Search

Dataset Listing

Show Expression Levels

Download Expression Data

About the Website

SPELL Version 2.0.3

Citation Aguilera J, Petit T, de Winde JH, Pronk JT. Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations. FEMS yeast research, 2005.
PubMed ID 15780657
Short Description Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations.
# of Conditions 18
Full Description 1316625150_help Physiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO(2)-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO(2) and 21% O(2). This observation indicated that respiratory metabolism is more sensitive to CO(2) than fermentative metabolism. Consistent with the more pronounced physiological effects of CO(2) in respiratory cultures, the number of CO(2)-responsive transcripts was higher in aerobic cultures than in anaerobic cultures. Many genes involved in mitochondrial functions showed a transcriptional response to elevated CO(2) concentrations. This is consistent with an uncoupling effect of CO(2) and/or intracellular bicarbonate on the mitochondrial inner membrane. Other transcripts that showed a significant transcriptional response to elevated CO(2) included NCE103 (probably encoding carbonic anhydrase), PCK1 (encoding PEP carboxykinase) and members of the IMD gene family (encoding isozymes of inosine monophosphate dehydrogenase).
Tags 1316625150_help
carbon utilization, chemical stimulus, nitrogen utilization, respiration