Citation |
Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner RE, Schadt EE. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.
Nature genetics, 2008. |
PubMed ID |
18552845
|
Short Description |
Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. |
# of Conditions |
9 |
Full Description
|
A key goal of biology is to construct networks that predict complex system behavior. We combine multiple types of molecular data, including genotypic, expression, transcription factor binding site (TFBS), and protein-protein interaction (PPI) data previously generated from a number of yeast experiments, in order to reconstruct causal gene networks. Networks based on different types of data are compared using metrics devised to assess the predictive power of a network. We show that a network reconstructed by integrating genotypic, TFBS and PPI data is the most predictive. This network is used to predict causal regulators responsible for hot spots of gene expression activity in a segregating yeast population. We also show that the network can elucidate the mechanisms by which causal regulators give rise to larger-scale changes in gene expression activity. We then prospectively validate predictions, providing direct experimental evidence that predictive networks can be constructed by integrating multiple, appropriate data types. |
Tags
|
transcriptional regulation
|