SPELL - S. cerevisiae - Dataset Details
New Search

Dataset Listing

Show Expression Levels

Download Expression Data

About the Website

SPELL Version 2.0.3

Citation De Nicola R, Hazelwood LA, De Hulster EA, Walsh MC, Knijnenburg TA, Reinders MJ, Walker GM, Pronk JT, Daran JM, Daran-Lapujade P. Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures. Applied and environmental microbiology, 2007.
PubMed ID 17933919
Short Description Response of yeast to zinc limitation in a chemostat culture under aerobic or anaerobic conditions
# of Conditions 6
Full Description 1316625150_help Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting in various carbon (glucose), nitrogen (ammonium), zinc, and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified, and the set enabled the definition of the Zn-specific Zap1p regulon, comprised of 26 genes and characterized by a broader zinc-responsive element consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large number of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified.
Tags 1316625150_help
metal or metalloid ion stress, nutrient utilization